Addressing AMR Challenges in Animal Health

Dr. NK Thapa Animal health specialist National Center for Animal Health, Serbithang, Thimphu Department of Livestock nkthapa@moal.gov.bt

Overview

- 1. Role of Animal Health for AMR
- 2. Tackling AMR issue
- 3. Legislative Framework supporting AMR mitigation activities
- 4. Governance
- 5. Promotion of rational use of antimicrobials
- 6. Creating and promoting awareness on AMR
- 7. National and international collaboration
- 8. AMR Profile of zoonotic bacteria
- 9. AMR surveillance in healthy Poultry 2022-23- Supported by Fleming Fund
- 10. Antimicrobial consumption in livestock sector(2017-2021)
- 11. KAP survey on antibiotic use & AMR
- 12. Antibiotic prescriptions in veterinary consultations
- 13. Way forward

1. Role of Animal Health for AMR

2. Tackling AMR issue : Need for one health approach

 Pathways of transmission for antimicrobial resistance between farm animals, the surrounding environment, and human populations

• Cella et al, Pathogens 2023, 12, 1074

3. Legislative Framework supporting AMR mitigation activities

- Medicine Act of Kingdom of Bhutan 2001
- •Bhutan Medicine Rules & Regulations –2019
- •Livestock Act of Bhutan 2001
- •Livestock Rules and Regulations 2022
- •Food Act of Bhutan 2005
- •Food Rules & Regulations 2017

* Bhutan Food & Drug Authority (BFDA) regulates & monitors the use of antimicrobials and drugs in both humans and animals (Antimicrobials classified as prescription only drugs).

4. Governance

> Ministry of Health is the lead agency for AMR activities

- Focal agency (NCAH, DoL) for MoAL-to coordinate the AMR activities in animal health
- ➢National Action Plan for AMR (2018-2022), NAP prioritized and costed-Joint (MoH & MoAL)
- Bhutan One Health Strategic Plan (2017 to 2022)
- Representation at IMCOH from the ministry
- ➢ Representation in the Bhutan Medicine Board
- Representation in National Antimicrobial Technical Committee (NATC)

Representation in Technical working group(TWG)

5. Promotion of rational use of antimicrobials

1. Guidelines

- Antibiotic guidelines for livestock 2016 (restriction on use of antimicrobials in animal feeds, withdrawal period)
- Standard treatment guidelines
- National Veterinary drug formulary (NVDF)2019
- In-country Livestock biosecurity guidelines 2015
- Infection prevention control (IPC) guidelines for Veterinary Hospitals (draft)

2. Druk med Offline mobile App: for NVDF & Antibiotic use guideline in Animals

Bhutan Agriculture and Food Regulatory Authority Ministry of Agriculture and Forests Royal Government of Bhutan Version 1, February 2015

6. Creating and promoting awareness on AMR

- Participation during World antimicrobial awareness week (WAAW) annually one health advocacy meets
- Participation in BBS panel discussion
- All the animal health facilities observe WAAW annually (November).

7. National and international collaboration

- Technical working group(TWG) meetings conducted with in the Department (DoL) and between ministries (JDWNRH, BFDA, RCDC).
- Chulalongkorn University, Thailand, AMR reference centre for AMR in Asia pacific region-Participation in EQA.
- Peter Doherty Institute, Australia (Host institute for AMR Fleming Fund Fellows).

The Bhutan fellows at the Bhutan Country Grant launch, with the UK High Commissioner to India and the Minister of Health, Royal Government of Bhutan.

8. AMR Profile of zoonotic bacteria

Source	Organisms	Prevalence	Resistance pattern to	References		
		(%)	Antimicrobials			
	Salmonella	Overall				
Imported chicken carcass (N=400)	(n=52)	(13)				
	S. entiridis	84.6	NA (95.5%) AMX(13.6%)			
	(n=44)		CE, (4.5%), CIP (2.3%) TMP, (2.3%)	Ellerbroek et al,		
	1		MDR (40/42) 95.2%	$\begin{array}{cccc} 2010. & Jint & 01 & F000 \\ Protection & 73(2) \end{array}$		
	400) S. typhymurium (n=8)	15.4	NA (100%), CE (12.5%)	376-379		
			MDR 100%			

Source	Organisms	Prevalence	Resistance pattern	References	
		(%)	to Antimicrobials		
Local chicken carcass (N=180)	Salmonella	Overall	TET (95.6%), TMP		
	(n=23)	(12.8)	(86.9%), AMX(65.2%), AMP(47.8%), GENT (13%), S (8.7%);	Kinley et al, Research	
			MDR 14(60.9%)	Square; 2022.	
	S. <i>typhymurium</i> (n=17)	73.9		DOI: 10.21203/rs.3.rs -764457/v2	
	<i>S. paratyphi</i> type B (n=6)	26.1		-	

Source	Organisms	Prevalence	Resistance pattern to	References		
		(%)	Antimicrobials			
	E. coli	Overall	AMP, CF, CTX, CIP, S, C,			
	(n= 2)	100	NA, SMZ, TMP, TET, K	¹⁾ Sharma et al., (AJAVS)		
Faecal samples of			MDR (CTX-M-15, TEM 1) 2.4%			
pigs (Government Pig breeding farms) (N=83)	Extended-	2.4		² 3, (1) 2017, PP 13-17		
	Spectrum B-			11 13-17		
	Lactamase					
	(ESBL)					
	Producers					

9. AMR surveillance in healthy Poultry for target bacteria2022-23- Supported by Fleming Fund

District	Samples (N)
Chhukha	150
Mongar	33
Paro	41
Pema Gatshel	11
S/jonkhar	44
Samtse	191
Sarpang	147
Thimphu	20
Trashigang	29
Tsirang	129
Total	795

b. Phenotypic resistance (%) to antibiotics

	Resistance (%)					
Antibiotics	E.coli	Salmonella	Enterococcus	Campylobacter		
		spp	spp	spp		
Gentamicin	1	0		11		
Chloramphenicol	5	2	2			
Tetracycline	60	28	39	21		
Cefepime	0					
Trimethoprim–Sulfamethoxazole	42	18				
Meropenem	0	0				
Ampicillin	21	8	3	10		
Nalidixic acid	34	25		97		
Ciprofloxacin	11	2		95		
Ceftriaxone	2	0				
Erythromycin			27	18		
Quinupristin-dalfopristin			38			
Tigecycline			19			
Streptomycin				23		

c. Multidrug resistance in target isolates

MDR%

10. Antimicrobial consumption in livestock sector(2017-2021)

Class	Amounts Consumed (kg)				
	2017	2018	2019	2020	2021
Aminoglycosides	14.63	9.82	2.10	17.58	25.03
Amphenicols	1.43	1.31	1.20	1.60	1.20
1st- and 2nd-generation cephalosporins	66.76	15.08	24.02	0.00	1.11
3rd- and 4th-generation cephalosporins	2.81	2.99	5.23	5.42	13.36
Fluoroquinolones	3.74	4.23	7.23	3.09	4.85
Penicillins	65.40	49.65	74.94	20.68	12.63
Sulphonamides	23.56	129.51	211.18	222.52	167.51
Trimethoprim	27.21	23.74	38.12	37.76	29.30
Tetracyclines	285.15	295.10	95.58	59.49	105.58
Others *	8.17	82.01	109.60	94.33	127.31
Total (kg)	498.86	613.43	569.20	462.47	487.89

Table 4. Consumption of different classes of antimicrobials by livestock in Bhutan.

* Metronidazole and nitrofurazone.

Gurung, et al, *Antibiotics* 2023, 12(411)

No significance difference in consumption pattern

11. KAP survey on antibiotic use & AMR (N=219 AH workers)

- 215 (98%) of the respondents had heard of AMR
- 112 (51.1%) had favorable attitude on antibiotic usage and AMR
- 146 (66%) had good practices on antibiotic use.

- Wangmo et al, 2021. PLoS ONE 16(5): e0251327
- Knowledge and awareness on antibiotics and AMR

12. Antibiotic prescriptions in veterinary consultations- 2017

- 31% of the consultations resulted in antibiotic prescription with highest in poultry sps. and common cases prescribed were for diarrhea and wound.
- 45%-70% antibiotics prescribed corresponded to AWaRe's access group & 25% to AWaRe's watch group of WHO.
- 70% of antibiotics dispensed belonged to VCIA

FIGURE 5 | Antibiotics prescribed to different species in veterinary consultation records of the WRLDj of Bhutan in 2017, stratified according to the AWaRe index and OIE classification. VCIA, veterinary critically important antimicrobial agents; VHIA, veterinary highly important antimicrobial agents.

Villanueva-Cabezas et al, 2021 Front. Vet. Sci. 8:641488. doi: 10.3389/fvets.2021.641488

13. Way forward

A. Governance

• Setting up Antimicrobial stewardship unit at National Veterinary Hospital (under Fleming Fund country grant phase II)

B. Awareness/Education

- Updating curriculum and module on AMR at CNR
- Conduct in-service and preservice training on AMR
- Develop TV and radio program on animal health

C. Research & Surveillance system

- Conduct research on AMR- on other species of animals- dairy
- Continue surveillance in AMU/AMC

Thank You

