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Abstract
Remote and rural communities in low- and middle-income countries (LMICs) are 
disproportionately affected by infectious animal diseases due to their close contact 
with livestock and limited access to animal health personnel). However, animal dis-
ease surveillance and diagnosis in LMICs is often challenging, and turnaround times 
between sample submission and diagnosis can take days to weeks. This diagnostic 
gap and subsequent disease under-reporting can allow emerging and transboundary 
animal pathogens to spread, with potentially serious and far-reaching consequences. 
Point-of-care tests (POCTs), which allow for rapid diagnosis of infectious diseases 
in non-laboratory settings, have the potential to significantly disrupt traditional ani-
mal health surveillance paradigms in LMICs. This literature review sought to identify 
POCTs currently available for diagnosing infectious animal diseases and to deter-
mine facilitators and barriers to their use and uptake in LMICs. Results indicated that 
some veterinary POCTs have been used for field-based animal disease diagnosis in 
LMICs with good results. However, many POCTs target a small number of key ag-
ricultural and zoonotic animal diseases, while few exist for other important animal 
diseases. POCT evaluation is rarely taken beyond the laboratory and into the field 
where they are predicted to have the greatest impact, and where conditions can 
greatly affect test performance. A lack of mandated test validation regulations for 
veterinary POCTs has allowed tests of varying quality to enter the market, presenting 
challenges for potential customers. The use of substandard, improperly validated or 
unsuitable POCTs in LMICs can greatly undermine their true potential and can have 
far-reaching negative impacts on disease control. To successfully implement novel 
rapid diagnostic pathways for animal disease in LMICs, technical, regulatory, socio-
political and economic challenges must be overcome, and further research is urgently 
needed before the potential of animal disease POCTs can be fully realized.
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1  | INTRODUC TION

In many low- and middle-income countries (LMICs), accurate and 
timely diagnosis of infectious diseases in human, let alone animal, 
populations remains challenging. Infectious agricultural and zoonotic 
diseases do not respect wealth or borders, and outbreaks of novel, 
re-emerging and transboundary animal diseases can have devas-
tating impacts on individual, community, regional and even global 
levels—as has become all too apparent with the ongoing African 
swine fever (ASF) epidemic, and the global COVID-19 pandemic that 
is currently upending the lives and livelihoods of billions of people 
worldwide.

Livestock and poultry provide food, agricultural labour, cloth-
ing, fertilizers and social status and act as wealth assets to more 
than 600 million livestock-dependent people around the world 
(Grace et al., 2012; Randolph et al., 2007). However, this depen-
dence comes with a disproportionately high burden of zoonotic 
infections and leaves the health and livelihoods of many rural com-
munities particularly vulnerable to incursions of animal diseases 
(WHO, Dfid, FAO, & OIE, 2006). Global urbanization is also caus-
ing increasingly frequent contact between wildlife, human and 
domestic animal populations, with resultant increases in zoonotic 
disease spillover from wildlife populations: 71.8% of recently iden-
tified emerging zoonotic disease events had a wildlife origin (e.g., 
severe acute respiratory syndrome, Ebola, Nipah), and such events 
have significantly increased in recent times (Jones et al., 2008). 
Animal rearing, slaughter, preparation and food consumption 
practices in many LMICs can further promote transmission of in-
fectious animal and zoonotic diseases. Throughout Asia for exam-
ple, live “wet” animal and seafood markets facilitate high-density 
mixing of people and multiple domestic and wild animal host spe-
cies from diverse geographical locations and can drive transmis-
sion, amplification and recombination of circulating viruses that 
may give rise to new strains with pandemic potential (Offeddu 
et al., 2016; Schar et al., 2019), including zoonotic swine- and avi-
an-origin influenzas and the more recent novel coronavirus SARS-
CoV-2 (WHO, 2020b).

Accurate and rapid field diagnosis of infectious and zoonotic an-
imal diseases in LMICs has many benefits. Early identification and 
management (e.g., treatment, isolation or culling) of infected animals 
can avert future medical costs associated with advanced disease in 
both animals and people, thereby benefiting health and livelihoods 
of subsistence farmers, communities and resource-limited govern-
ment services. From a global perspective, such early diagnosis and 
management decisions can prevent onward transmission of infec-
tious pathogens, protecting the health and wellbeing of human and 
animal populations worldwide, and potentially containing epidemics 
that would otherwise have serious and far-reaching consequences.

Few infectious diseases have pathognomonic clinical signs 
or syndromes, which makes presumptive diagnosis, treatment or 
management based on clinical appearance alone inadvisable. One 
study evaluated the diagnostic accuracy of Bangladeshi veterinari-
ans identifying foot and mouth disease (FMD) and peste des petits 

ruminants (PPR) in cattle and goats based on clinical presentation 
and reported overall sensitivity and specificity of 54% and 81%, 
respectively, compared to polymerase chain reaction (PCR) testing 
(Haider et al., 2017). Unfortunately, improved diagnostic and surveil-
lance capacity for animal diseases in many LMICs is severely ham-
pered by a combination of factors, including under-resourced field 
veterinary services, difficulties in sending samples to animal health 
laboratories (that may also be limited in the tests they can perform), 
and a general lack of investment by governments (WHO, Dfid, FAO, 
& OIE, 2006). Well-meaning international donors donate special-
ized laboratory equipment and vehicles to government veterinary 
services that may not have sufficient budgets or resources to keep 
them adequately staffed, equipped or maintained (OIE, 2011). In 
many LMICs, long transport distances and unreliable sample referral 
logistics (e.g., poorly maintained roads and vehicles, fuel shortages, 
inadequate courier networks, seasonally inaccessible roads), difficul-
ties maintaining cold chain, under-equipped laboratories, shortages 
of trained personnel and prohibitively expensive operating costs 
contribute to long turnaround times between sampling, laboratory 
diagnosis and medical follow-up. In Vietnam for example, suspected 
avian influenza samples take an average of 6–24 hr to reach a diag-
nostic laboratory, with total turnaround times from submission to 
result averaging 2.5 days (Inui et al., 2019). In Uganda, prior to the 
implementation of strengthening interventions, the median trans-
port time of human diagnostic tuberculosis samples was 12 days 
(range 1 to 240 days), with only 9% of specimens reaching the cen-
tral laboratory within the three-day target transport time (Joloba 
et al., 2016). For highly infectious animal diseases of agricultural and 
zoonotic significance, such delays can have catastrophic outcomes. 
Rapid, on-the-spot diagnosis of infectious animal diseases in LMICs, 
therefore, could potentially avert or mitigate these constraints and 
consequences.

Point-of-care tests (POCTs) are defined as, “a fully or partially 
automated table-top, portable or disposable device able to be op-
erated in a non-laboratory environment by non-technical staff to 
deliver a same-day, on-site, clinically relevant, diagnostic test result” 
(Lehe et al., 2012). POCTs, also known as “rapid diagnostic tests”, 
“point of need tests” and “near patient tests”, come in a range of dif-
ferent formats, and are currently being used by human, animal and 
plant industries for a range of applications worldwide. They are de-
signed to be portable, user-friendly, simple to use, and usually have 
a turnaround time from sample to result in under an hour, allowing 
diagnosis and management decisions to be initiated within the same 
encounter. Many different POCT platforms and formats exist, rang-
ing from paper-based lateral flow assays (LFAs) and dipsticks like the 
globally recognized urine pregnancy test, to portable nucleic acid 
detection systems (e.g., loop-mediated isothermal assays (LAMP), 
recombinase polymerase assays, portable and/or isothermal PCR 
devices), to handheld nanopore sequencing devices, wearable elec-
tronic sensors, “smart” textiles and more (Nayak et al., 2017; St John 
& Price, 2014; Vashist, 2017; Yager et al., 2008; Zarei, 2018). Some 
POCTs detect a single analyte or disease agent and others allow mul-
tiplexing to incorporate testing for two or more targets; some are 
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disposable single-use cartridges or cassettes, while others provide 
a portable platform on which a suite of different assays can be run. 
POCTs may be applicable to a range of different clinical purposes, 
including screening, diagnosis, monitoring, prognosis, surveillance 
or staging (WHO, 2019a). Many POCTs utilize smartphones, Wi-Fi 
and/or Bluetooth connections to allow data transmission between 
remote field sites and central databases (Peeling & McNerney, 2014; 
St John & Price, 2014). POCTs typically require very small sample 
volumes, allowing minimally or non-invasive sampling methods such 
as capillary blood sampling or swabbing techniques that may in-
crease testing compliance in some cultural settings where invasive 
sampling methods such as venepuncture are poorly tolerated.

Recent years have seen POCT development and commercial-
ization increase exponentially—a PubMed search for “point of care 
test” returned over 17,500 results at the time of writing—and the 
trend is predicted to continue as methodologies are refined and 
new technologies emerge. In the human medical space alone, the 
global market for diagnostic POCTs was valued at $24 billion USD 
in 2018 and is expected to more than double by 2026 (Reports & 
Data, 2019). While clinical chemistry POCTs dominate at present 
(Frost & Sullivan, 2016), infectious disease POCTs are predicted to 
grow at the fastest rate over the next 5–10 years, thanks in part to 
a number of high profile funding calls, mergers and collaborations 
in recent times (Reports & Data, 2019). The veterinary diagnostic 
POCT market is similarly predicted to increase, based largely on 
adoption of developments and technologies from the human POCT 
sector, coupled with increases in livestock ownership and per capita 
income, particularly in emerging Asian economies such as China and 
India (TechNavio Insights, 2014).

For infectious diseases, the biggest potential for POCTs is to sig-
nificantly disrupt traditional laboratory-based diagnostic pathways in 
LMICs, especially in decentralized rural settings where maintenance 
of cold chain and transport of field-collected samples to the nearest 
capable laboratory is particularly challenging. When employed at 
critical disease transmission points, POCTs have the potential to pre-
vent or curtail emerging or future epidemics, aid in contact tracing 
and facilitate mapping of the geographical distribution and evolution 
of infectious diseases in essentially real time. Studies demonstrat-
ing this potential in developing countries are increasing. Cepheid’s 
Ebola GeneXpert POCT, for example, which reduces the turnaround 
time for Ebola sample testing from days to hours, was credited by 
researchers and health officials as helping to contain the disease 
spread during a 2018 outbreak in the Democratic Republic of the 
Congo (Butler, 2018). Diagnostic POCTs could be used to great ef-
fect in live “wet” animal markets, allowing rapid identification of 
novel or emerging pathogens in domestic and wild animals as well 
as humans, enabling traceback of pathogens up the supply chain to 
determine the geographic location of disease emergence, and po-
tentially providing essential early warning of disease spillover into 
susceptible human populations in high-risk areas. POCTs could also 
be used effectively at border crossings, airports and other points 
of entry, where rapid identification of infected animals or animal 

products is crucial to prevent disease incursions beyond prescribed 
borders.

Despite the abundance of POCTs on the commercial market and 
clear role for POCTs in remote and rural settings, their true potential 
in LMICs is still far from being realized. To explore possible reasons 
for this gap, this literature review sought to investigate whether 
POCTs are currently being used in LMICs for diagnosis of infectious 
and zoonotic animal diseases, to determine characteristics of “ideal” 
POCTs that would facilitate their use and to identify any barriers to 
uptake in these settings.

2  | MATERIAL S AND METHODS

This narrative literature review used a hermeneutic approach that 
emphasized continuous engagement with and the gradual develop-
ment of a large body of literature, to develop understanding and 
insights related to this broad and complex topic (Boell & Cecez-
Kecmanovic, 2014). The interpretation and critique that this narra-
tive form of review would bring to this topic was preferred over a 
systematic approach more suited for addressing narrowly focussed 
research questions (Greenhalgh et al., 2018; Thorne, 2018). We 
used an iterative search strategy of electronic databases, including 
PubMed, Web of Science and Google Scholar, using different com-
binations of the following words and phrases to identify relevant 
publications: POC [point-of-care], “point of care tests”, POCT, “field 
test”, “rapid test”, “rapid diagnostic test”, zoonoses, infectious, vet-
erinary, livestock, animal, “developing countries”, “low and middle in-
come countries”, socioeconomic, impacts, acceptability, barriers and 
innovations. We also searched reference lists from key reviews and 
articles to identify additional publications of interest.

We did not attempt a formal, comprehensive systematic review 
of the literature due to the breadth and complexity of the topic, 
and the large variety in the type of reference materials examined. 
Nevertheless, we screened articles based on titles, abstracts and full 
texts, and purposively selected representative articles for inclusion 
in this review based on the following criteria:

(i) Inclusion criteria: Any publications relating to the testing, valida-
tion, review and commentary of diagnostic POCTs for infec-
tious animal diseases (including zoonoses) in LMICs, published 
in English, in any year through and including January 2020. We 
selected studies that were relevant under the following catego-
ries: 1) usage, including reviews, trials and comparative studies of 
diagnostic infectious animal disease POCTs in LMICs; 2) consid-
erations for aspects of the “ideal” POCT, with particular empha-
sis on applications in LMICs; 3) barriers to usage and uptake of 
infectious animal disease POCTs in LMICs.

(ii) Exclusion criteria: Any publications involving non-diagnostic 
POCTs, or POCTs for diagnosis of non-infectious diseases in 
animals or of human-only diseases; publications relating to non-
POCT animal diagnostic methods; any media in any languages 
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other than English. Foreign language material was excluded be-
cause of the cost and time required for translation.

Where specific examples of publications regarding usage, im-
plementation or impact of veterinary POCTs in LMICs were miss-
ing from the literature, we searched for relevant examples from 
the medical literature in order to provide a comparison for discus-
sion. We also searched organizational websites including the World 
Organisation for Animal Health (OIE) and Food and Agriculture 
Organization of the United Nations (FAO) for information relating to 
POCTs for diagnosis of animal diseases. We also identified manufac-
turers of POCTs from key publications and documents and searched 
the internet for additional POCT manufacturers to identify those 
currently producing commercial diagnostic veterinary POCTs, and 
to obtain validation data and test kit inserts for infectious animal 
disease POCTs where available. The final bibliography included 567 
documents (including journal articles, reports and guidelines) and 19 
commercial POCT kit inserts from 11 manufacturers.

3  | RESULTS

3.1 | Are diagnostic POCTs currently being used for 
infectious animal diseases in LMICs? What are their 
impacts?

There have been increasing numbers of studies reviewing POCTs 
for diagnosis of infectious animal diseases published in recent years, 
and reports of their application in LMICs have also been on the 
rise. POCTs for rapid detection of infectious animal diseases with 
important zoonotic and/or economic impacts are the most com-
monly reported and often a range of different POCT formats have 
been developed, including for FMD (Abd El Wahed et al., 2013; Bath 
et al., 2020; Dukes et al., 2006; Madi et al., 2012; Reid et al., 2001; 
Yamazaki et al., 2013), highly pathogenic avian influenza (HPAI) 
(Boland et al., 2006; Imai et al., 2007; Postel et al., 2010; Slomka 
et al., 2012; Takekawa et al., 2010), canine rabies (Léchenne 
et al., 2016; Rupprecht et al., 2018; Tenzin et al., 2020) and ASF 
(Cappai et al., 2017; Sastre, Gallardo, et al., 2016; Sastre, Pérez, 
et al., 2016). Other target diseases for diagnostic veterinary POCTs 
include anthrax (Kurosaki et al., 2009; Muller et al., 2015; Pillai 
et al., 2019), PPR (Brüning-Richardson et al., 2011; Rajko-Nenow 
et al., 2019; Yang et al., 2017), bovine tuberculosis in cattle and in 
various wildlife species (Fresco-Taboada et al., 2019; Lyashchenko 
et al., 2008; Tschopp et al., 2010), animal African trypanosomiasis 
(Boulangé et al., 2017) and a variety of parasites including Anaplasma 
marginale (Giglioti et al., 2019), Trichenella (Li et al., 2019) and 
Haemonchus contortus (Melville et al., 2014). Many of the published 
studies report the development and evaluation of these diagnostic 
POCTs, and although most remark on their potential to be used in 
remote and resource-limited settings, few actually take the tests out 
of laboratory environment and into the field.

Some notable examples do exist in the literature. Field studies in 
eastern Africa used a commercially available, pan-serotype-specific 
PCR-based assay for detection of FMD using lyophilized reagents 
and a portable, field-ready thermocycler, and obtained diagnostic 
accuracy comparable to that of an OIE-recommended laborato-
ry-based test (Howson et al., 2018). The POCT was further able to 
reliably detect different serotypes of FMD viral material in a variety 
of samples taken from pre-clinical, clinical and clinically recovered 
cattle, with results available in under 90 min (Howson et al., 2018). 
A LAMP assay has also been developed and validated for rapid field 
detection of FMD, specifically designed to optimize the speed and 
operability of the test by non-laboratory personnel on unextracted 
field samples (Bath et al., 2020). Loth et al. (2008) conducted field 
testing of two LFAs for detection of HPAI in oropharyngeal swabs 
taken from free-ranging village chickens in Indonesia, and PCR test-
ing on replicate swabs confirmed diagnostic sensitivities and spec-
ificities of the POCTs as 69%–71% and 98%, respectively. More 
recently, a Vietnamese pilot study reportedly took portable nucleic 
acid extraction and insulated isothermal PCR platforms into live bird 
markets to conduct rapid, on-the-spot testing of oropharyngeal 
swabs from poultry for detection of HPAI (Schar et al., 2019). A LFA 
for the detection of PPR virus in ocular and nasal swabs was trialled 
in field sites in Pakistan, Ethiopia, Ivory Coast and Uganda, and the 
test results obtained within 15–30 min reported diagnostic sensitiv-
ity and specificity of 84% and 95%, respectively, compared to PCR 
(Baron et al., 2014). The authors of this study also reported feedback 
from the field trials as being uniformly positive, with the portability 
of the tests and ease of use particularly emphasized.

Impacts of these POCTs on in-country disease control or surveil-
lance were not readily available from the literature.

3.2 | What are the “ideal” characteristics for 
diagnostic infectious animal disease POCTs in LMICs?

3.2.1 | Fitness for purpose

While POCTs are designed to be simple and easy to use, their un-
derlying biochemical processes are nevertheless highly sophisti-
cated, and results need to be interpreted with due consideration of 
the tests’ fitness for purpose, including strengths, limitations and 
applications in various settings (Gardner et al., 2019). Estimates 
of diagnostic validity depend on several factors, including speci-
men type and quality, stage of infection (pre-clinical versus clinical 
phase), strain of pathogen and pathogen load in the host, and host 
characteristics including age, sex, vaccination status, pregnancy and 
species (Gardner et al., 2019). POCTs that detect circulating host an-
tibodies can only confirm an animal’s exposure to a pathogen rather 
than a current infection and may return false-negative results if the 
samples were collected before a detectable immune response was 
developed. Pathogen-derived nucleic acids may be detectable in ani-
mals that appear clinically well, allowing identification of early or late 
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stages of infection when clinical symptoms are not yet present or 
have already disappeared. This is of particular relevance for chronic 
or sub-clinical diseases. Sample contamination and non-specific re-
actions to non-target pathogens or matrix components may also lead 
to false-positive results.

All these factors should be considered prior to the develop-
ment of a new POCT. Like any diagnostic test, a POCT should, 
above all, be fit for its intended purpose; that is, it should meet 
clearly defined, pre-decided criteria for its intended use (e.g., to 
confirm suspect or clinical cases of disease in an individual or de-
fined population, to estimate prevalence of infection or exposure 
to facilitate risk analysis, to determine immune status of individu-
als or defined populations, to demonstrate freedom from infection 
in an individual or defined population, etc) and other desired attri-
butes including characteristics of safety and efficacy (OIE, 2018a). 
An ASF POCT with low diagnostic sensitivity, for example, would 
be unsuitable as a standalone test for screening live pigs but may 
be sufficiently sensitive to be used as a herd test, or to confirm 
infection in individual pigs that died from ASF, in which large 
amounts of virus are present (Oura et al., 2013). Target product 
profiles (TPPs) outline the desired “profile” or performance char-
acteristics of a new product (including diagnostics, drugs and 
vaccines) and are used by organizations such as the WHO, United 
States Food and Drug Administration (FDA), and Foundation for 
Innovative New Diagnostics (FIND) as planning tools to identify 
key test criteria, guide test development and set research and de-
velopment (R&D) targets for funders and developers (FIND, 2019; 
WHO, 2019b). Ideally, TPPs for each novel POCT should be de-
fined through several rounds of discussions with key stakeholders 
including disease experts, target users and manufacturers.

Once these characteristics have been established to ensure fit-
ness for purpose, other considerations should also be addressed. 
The “ASSURED” criteria set out by the World Health Organisation 
(WHO) state the ideal characteristics for a field-ready diagnos-
tic test as Affordable, Sensitive (few false negatives), Specific (few 
false positives), User-friendly (able to be performed in a few steps 
with minimal training), Robust (no cold storage needed) and rapid 
(results available in under 30 min), Equipment-free and Deliverable 
to those who need it (Kosack et al., 2017). Social studies have indi-
cated that shorter diagnostic turnaround times (up to 20 min), high 
diagnostic accuracy (sensitivity and specificity above 90%), low cost 
and ease of use are particularly important factors for some public 
health workers (Asiimwe et al., 2012; Hsieh et al., 2011). It should 
be emphasized that there can be no “one size fits all” description of 
the ideal diagnostic POCT, as fitness for purpose will be determined 
by the needs, intentions and resources of the veterinary services in 
each distinct geopolitical setting.

3.2.2 | Additional considerations for LMICs

To be truly deliverable to remote locations, POCTs should be port-
able, self-contained and either equipment-free or battery-operated, 

with thermostable, lyophilized reagents that do not require cold 
chain or reconstitution with high-quality solutions. As target users 
of POCTs are expected to have minimal laboratory training, POCT 
protocols should require minimal preparatory or extraction steps 
prior to sample testing (Crowther et al., 2006; Pai et al., 2012). POCT 
devices would ideally include internal quality controls, with out-of-
range results clearly identifiable to POCT operators.

POCTs that have multiplexing ability, enabling samples to be 
tested against several diseases in parallel, would be expected to 
significantly improve acceptance by farmers and livestock owners. 
Notable examples of multiplexed veterinary diagnostic POCTs in-
clude LAMP assays that detect all seven distinct FMD serotypes 
(Yamazaki et al., 2013), and an in-development LFA for the simulta-
neous testing of ASF and classical swine fever viruses in pig blood 
(Sastre, Pérez et al., 2016). POCTs able to differentiate infected 
from vaccinated animals, for example non-structural protein FMD 
LFAs (Bionote, 2020; King et al., 2015) would also be instrumental 
for monitoring the progress of disease elimination or eradication 
campaigns, such as the OIE’s mission to eradicate PPR by 2030 
(OIE, 2019).

Cost and cost-effectiveness are important factors to consider 
when evaluating POCTs for potential introduction into LMICs. 
While costs of individual tests can be higher for POCTs compared to 
high-throughput laboratories, POCTs are likely to appeal to govern-
ment veterinary services in LMICs due to their lower initial purchase 
price, as well as decreased ongoing costs for operation, maintenance 
and personnel training. Modifying testing strategies where appro-
priate can provide additional savings, such as pooling of samples 
to reduce numbers of test runs; this was successfully implemented 
in Vietnamese live poultry markets, in which oropharyngeal swabs 
from five birds were pooled for testing with HPAI POCTs, at a cost 
of $10 USD per test run (Schar et al., 2019). Other considerations in-
clude costs of manpower, equipment and reagent storage, and trans-
port for veterinary staff implementing POCTs in the field. Indirect 
costs include effects of POCTs on policy, trade and the economy, as 
well as on public health, welfare and trust (Greiner & Gardner, 2000).

POCTs can also provide interim diagnostic solutions while lon-
ger-term laboratory capacity is being developed. Portable, field-
ready LAMP and PCR platforms, for example, are currently being 
used for animal disease testing in Timor-Leste while the country’s 
PCR laboratory capability is progressing [personal observation, JA]. 
However, it should be stated that POCTs are rarely intended to re-
place traditional laboratory testing altogether, as representative 
samples will typically still require laboratory testing to confirm and 
genetically characterize the disease agent, particularly for outbreaks 
of notifiable or reportable diseases. Effective sample transport net-
works and suitably equipped and staffed laboratories will therefore 
still be needed in LMICs for the foreseeable future (Dowdy, 2016; 
Fonjungo et al., 2017). In developed countries such as Australia, 
POCTs are being used as frontline surveillance tools for prelimi-
nary diagnosis of important livestock diseases including FMD and 
ASF, with the condition that all samples, including those that test 
negative by POCTs, will continue to be tested in accredited state 
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laboratories using OIE-approved “reference standard” methods 
(Bath et al., 2020).

3.3 | What are the barriers for usage and uptake of 
infectious animal disease Pocts in LMICs?

3.3.1 | Lack of validated and affordable diagnostic 
POCTs for infectious animal diseases

While some commercially available POCTs for diagnosis of infec-
tious animal diseases have been described above, there are still many 
pathogens for which no rapid, field-ready tests are available. The 
R&D process for a new diagnostic (human) test costs $2–10 million 
USD and takes 5–10 years (Peeling & Mabey, 2010). Products are 
market driven, thus more POCTs are available for those diseases that 
are commonly seen in developed nations, where affordability is not 
an issue. Neglected zoonotic and agricultural diseases affect mainly 
impoverished, marginalized communities that have little purchasing 
potential for novel diagnostic tests (WHO, Dfid, FAO, & OIE, 2006), 
making them unattractive product targets for commercial investors. 
New test development is largely supported by a handful of public 
and philanthropic organizations, but investment is often insufficient 
and unevenly distributed: of the $3.5 billion USD invested in R&D 
for neglected diseases in 2017, 70% was allocated to HIV/AIDS, tu-
berculosis and malaria (Chapman et al., 2019; Moran, 2011), and as 
of July 2019 less than 0.5% of global health-related products in the 
development pipeline were targeting neglected tropical diseases 
(WHO, 2019b).

Test developers in LMICs may be more motivated to invest in 
POCT R&D for animal diseases that are prevalent in their regions, 
however may be hampered by a lack of funding, personnel and re-
sources, or global recognition of POCTs if developed.

3.3.2 | Lack of mandated central 
register of approved POCTs for detection of 
infectious animal diseases

The WHO publishes R&D Blueprints for priority human diseases 
in which ideal product specifications for POCTs are described 
(WHO, 2020a). They also provide a service for the evaluation of 
novel POCTs for a range of human diseases, with favourably evalu-
ated assays included in their widely used “model list of essential in 
vitro diagnostics” (WHO, 2018, 2019a). The OIE offers a formal vali-
dation and certification process for diagnostic animal disease tests, 
including (but not specifically) POCTs, and also maintains a register 
of diagnostic veterinary kits that have been certified as fit for pur-
pose (https://www.oie.int/scien tific -exper tise/regis trati on-of-diagn 
ostic -kits/the-regis ter-of-diagn ostic -kits/). The assessment process 
takes an estimated 135 days and costs 4,500 Euros. While generally 
accepted as “best practice” for veterinary diagnostics, as of August 
2020 only 14 kits are registered for a total of 11 pathogens, and only 

two are POCTs. Because this process is not mandatory, and because 
the register is not widely used, manufacturers—particularly smaller, 
underfunded POCT manufacturers in LMICs—may see little value 
in registering. This lack of a comprehensive, widely used reference 
point for approved diagnostic animal disease POCTs makes it dif-
ficult for LMICs and other users to differentiate reliable POCTs from 
cheaper, unvalidated tests that are entering the market at present. 
Without reliable evidence of a test’s diagnostic accuracy or fitness 
for purpose, many LMICs may simply be selecting POCTs based on 
purchase price alone.

3.3.3 | Current limitations to POCT validation and 
regulatory processes

Lack of consistency and transparency of POCT validation data
The OIE Terrestrial Manual has a section outlining the recommended 
validation pathway for novel diagnostic tests for infectious animal 
diseases (OIE, 2018c), including assessment of analytical and diagnos-
tic characteristics, repeatability and reproducibility, for independent 
evaluation of test performance under varying environmental and 
operator conditions. There are separate chapters specifically ad-
dressing the development and optimization of antibody, antigen and 
nucleic acid detection assays; while generally comprehensive docu-
ments, none of these extend to or include requirements for those as-
says to be used in field settings (i.e., POCTs). Several other checklists 
and guidelines have been created for validation of diagnostic assays 
and to facilitate transparency of reporting diagnostic accuracy stud-
ies (Cohen et al., 2016; Huddy et al., 2015; Shabir, 2004; Whiting 
et al., 2011). In some countries, such as Germany (FLI, 2019), POCTs 
for the detection of notifiable and reportable animal diseases must 
be evaluated and approved by the national licensing authority. For 
most countries however, adherence with “best practice” guidelines 
for manufacturers of animal disease POCTs is neither mandatory nor 
regulated.

Without regulations enforcing test validation, animal disease 
diagnostics—including POCTs—of varying quality and effectiveness 
can be sold and used, often in the developing world, with limited, 
misleading or incorrect data about their diagnostic validity in the 
target population (Peeling & Mabey, 2010). Indeed, some disturb-
ing trends are observable from available literature. Studies reporting 
diagnostic test accuracy in general often fail to transparently and 
completely describe essential information about core elements in-
cluding study design (e.g., differences between the study and target 
population, and patient selection), and tend to be overly generous 
and optimistic about tests’ value (Cohen et al., 2016). POCT kit in-
serts generally include some validation data obtained from small, 
carefully regulated laboratory studies, which are unlikely to rep-
resent real-world conditions, and while diagnostic sensitivity and 
specificity values are often stated, they rarely include confidence 
intervals which would provide end users with data about sample 
sizes or test power. Positive test controls are often negative sam-
ples “spiked” with pathogenic material at concentrations higher than 

https://www.oie.int/scientific-expertise/registration-of-diagnostic-kits/the-register-of-diagnostic-kits/
https://www.oie.int/scientific-expertise/registration-of-diagnostic-kits/the-register-of-diagnostic-kits/
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in clinical samples and may not include typical sample matrices or 
common contaminants (e.g., blood, mucus, soil), thereby artificially 
inflating test performance (Crowther et al., 2006). Host-pathogen 
interactions may be different in experimental animal species and 
breeds (e.g., Landrace pigs, commercial layer chickens) than in native 
animal populations. Experience from the field showed that levels 
of Newcastle disease virus shed in native Bhutanese chickens are 
detectable by POCTs in oropharyngeal secretions but not in fae-
ces, yet commercial POCT kit inserts recommend testing on both 
sample types [personal observation, RBG]. Testing panels of posi-
tive and negative samples typically represent disease prevalence 
far above or below what would be expected in natural populations, 
which can also artificially inflate indicators of test accuracy (Banoo 
et al., 2006; Dowdy et al., 2011). Manufacturer quoted predictive 
values are likely to be inflated by artificially high prevalence in val-
idation test populations, meaning the tests will produce more false 
positives in real-world settings where disease prevalence is usually 
lower (Crowther et al., 2006). Many POCT users with limited diag-
nostic and epidemiological experience will not have the knowledge 
or understanding to correctly interpret and apply these data to their 
own environments; consequently, regulations should be developed 
for manufacturers to standardize the validation data published in 
test kit literature.

Lack and limitations of field validation studies for infectious animal 
disease POCTs
Typically, POCTs are utilized in the field under varying environmen-
tal conditions, on a range of sample types collected in non-sterile 
settings by operators with a diverse range of experience, training 
and proficiency. Storage conditions of POCT devices and reagents 
may be subject to a higher variability than in an accredited labora-
tory. Consequently, in addition to general validation requirements 
for diagnostic assays, POCT-specific parameters such as robustness 
and ruggedness need to be defined and addressed during the valida-
tion process.

Intra- and inter-operator variation need to be assessed in POCT 
validation studies under a range of realistic field conditions that are 
representative for each intended target location. For example, if a 
test has been validated for use with oropharyngeal swabs but field 
operators are only able to take cloacal swabs, the results obtained 
for these specimens may not be reliable. Experience and compe-
tence of operators, as well as variations in sample types and quality, 
and environmental factors including exposure to direct sunlight, hu-
midity, temperature, dust, soiling and other physical impacts are all 
key factors that will impact on a POCT’s fitness for purpose. Results 
will help to detect robustness against internal variation (repeatabil-
ity), and ruggedness against external conditions such as climatic 
conditions and levels of proficiency (reproducibility). To assess and 
monitor reliability, it is important to include internal quality controls 
to confirm the basic functioning of the device; for example a weak 
positive control (to confirm sensitivity of device and avoid false-neg-
ative results); a negative control (to confirm that test reagents are 

not contaminated producing false-positive results); and for nucleic 
acid detection assays, an internal control to identify the presence of 
matrix inhibitors.

With some notable exceptions, including some described earlier 
(Bath et al., 2020; Certoma et al., 2018; Howson et al., 2018), many 
validation studies fail to conduct actual field testing of novel POCTs. 
Outside the laboratory environment, suboptimal testing conditions 
including variations in temperature, humidity, operator ability, water 
and reagent quality, inadequate cold chain, and poor or non-existent 
quality assurance systems can all contribute to lower test accuracies 
than those reported by POCT manufacturers. Diagnostic sensitivi-
ties of six commercially available LFAs for detection of rabies virus 
in brain tissue, for example, reportedly ranged from 0% to 100% for 
field samples, with a maximum sensitivity of 32% for samples taken 
from experimentally infected animals (Eggerbauer et al., 2016). The 
authors of that comparative study also noted that POCT kit in-
structions failed to specify the requisite volume and collection lo-
cations of brain tissue, which could substantially affect test results 
(Eggerbauer et al., 2016). One of the rabies POCTs was subsequently 
improved (diagnostic sensitivity and specificity approaching 100%) 
by omitting the first dilution step recommended by the manufac-
turer (Léchenne et al., 2016), suggesting the assay’s development 
and validation processes may not have been suitably rigorous.

Any application of a POCT outside the strict workflow in which it 
was validated (including sample types or non-target host species) can 
cause incorrect and unspecific reactions that could affect treatment 
and management decisions and may undermine user confidence in 
POCTs. Several LFAs for detecting rabies in brain material showed 
better diagnostic performance on samples from South Africa than 
from Eurasia and northern America (Eggerbauer et al., 2016), which 
could reflect differences in viral strains, sample preparation methods 
or a range of other factors. Some HPAI POCTs demonstrated higher 
diagnostic sensitivities with samples from chickens (65%–85%) than 
from ducks (33%–53%) (Slomka et al., 2012). Accuracy of test re-
sults may also depend on strict sample collection, extraction and/or 
storage requirements, including maximum storage times. Rapid FMD 
PCR assays trialled in eastern Africa, for example, showed reduced 
diagnostic accuracy in field samples taken from older (four days 
and older) than from fresh (one- to three-day-old) lesions (Howson 
et al., 2018). One rabies LFA requires brain samples to be tested im-
mediately after collection (Léchenne et al., 2016), while another ASF 
LFA allows blood, collected into any anticoagulant, to be refrigerated 
for up to four days prior to testing (Ingenasa, 2019). Despite the im-
portance of these factors to end users, data about POCTs’ validation 
pathways, applicability to other species and sample types, and gen-
eral fitness for purpose in field settings is largely lacking.

Difficulties conducting full validation for some infectious animal 
disease POCTs
Some situations exist in which full independent validation of novel 
diagnostic POCTs is not feasible. During the early stages of the 
2013–2016 west African Ebola epidemic, for example, there were 
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no validated devices available for rapid disease diagnosis. However, 
emergency use authorizations issued by the US FDA enabled sev-
eral POCTs that had undergone initial validation to be used in the 
field, thus helping to contain the spread of Ebola during subsequent 
outbreaks (Butler, 2018; Dhillon et al., 2018). Similarly, several coun-
tries’ authorities, including Australia, have granted emergency ap-
proval for use of POCTs detecting SARS-CoV-2 during the current 
COVID-19 pandemic, including Cepheid’s GeneXpert nucleic acid 
test and a number of LFAs (TGA, 2020).

Disease investigation in wildlife presents unique challenges, 
due to often limited data on wildlife physiology and pathogen be-
haviour, as well as logistic and regulatory considerations around 
collection, use and international transport of wildlife and their tis-
sues (OIE, 2018b). A recent review from Jia et al. (2020) about val-
idation of laboratory tests for infectious diseases in wild mammals 
revealed incomplete or absent information about sampled animals 
and/or species, case definition criteria and source and target pop-
ulations that would impact test validity and inform applicability 
of test results, including their status as naturally infected captive, 
free-ranging or experimentally challenged animals. Sampling is often 
opportunistic, and individual capture and follow-up frequently un-
achievable. Given these limitations, the OIE provides guidelines for 
provisional validation of diagnostic wildlife disease tests, which can 
provide confidence in results (OIE, 2018b). An extension of this was 
the development of a network approach for provisional validation of 
Hendra virus laboratory diagnostics due to limited numbers of pos-
itive samples (Colling et al., 2018); this may also be successful for 
validation of wildlife diagnostic POCTs, and/or for POCT developers 
in disease-free regions where import restrictions obstruct access to 
viable samples for validation studies. Australian biosecurity laws, for 
example, prohibiting the importation of live FMD virus prompted 
Bath et al (Bath et al., 2020) to conduct preliminary validation of a 
novel FMD LAMP assay on inactivated FMD samples in Australia, 
followed by field testing of live samples in Bhutan and Thailand 
where the disease is endemic.

3.4 | Socioeconomic considerations for animal 
disease Pocts at the community level

Early identification and management (treatment, isolation or 
culling, for example) of infected animals can avert future medi-
cal costs associated with advanced disease in both animals and 
people, thereby protecting the livelihoods and wellbeing of sub-
sistence farmers and their communities and reducing burdens on 
resource-limited medical and veterinary services. Increased em-
powerment of farmers with regard to animal treatment and man-
agement decisions may particularly benefit women and children, 
who are the primary carers of pigs, poultry and small ruminants in 
many developing countries (Donadeu et al., 2019), provided they 
are also empowered to spend money on their animals. For test 
results to translate into tangible benefits for communities, robust 

reporting and capable veterinary follow-up must support the out-
comes of POCTs, otherwise positive test results will be of little 
benefit to livestock owners, who may prefer to spend their money 
on antibiotics or other potentially curative treatments. The capa-
bility of veterinary services to conduct and follow-up from POCTs 
in field settings will be determined by a range of factors, including 
workloads, training and the availability and sustainability of sup-
plies (Osorio et al., 2018), and a breakdown in any of these areas 
may undermine community perception of the value of POCTs. 
In situations where test-positive animals will lose market value 
(such as pigs who test positive for porcine cysticercosis (Hobbs 
et al., 2018)), require confirmatory testing and/or culling, owners 
must be suitably compensated. Failure to adequately compensate 
animal owners is likely to decrease compliance with testing or 
reporting of unwell livestock, and may lead to the unauthorized 
movement, hiding or salvage selling of these animals, potentially 
exacerbating disease transmission and undermining disease con-
trol efforts (Fèvre et al., 2006). Compensation for testing, and de-
valued or culled animals, however, is highly variable and entirely 
dependent on animal health policies of each country.

Target users of POCT in LMICs are typically not laboratory per-
sonnel and are likely to have limited capacity building opportunities 
necessary for using, interpreting and applying results of diagnostic 
tests (Nichols, 2007). Furthermore, POCTs are likely to be used in 
remote field sites, where experienced personnel for supervision or 
training of POCT users may be in short supply. Responsibility for 
interpreting POCT results and instigating treatment or manage-
ment decisions may vary, based on the available staff resources 
in each area, and on the nature of the disease or pathogen being 
tested. Testing for notifiable diseases or pathogens of pandemic 
potential, for example, may increase the level of oversight or con-
firmatory testing needed. Technology could be leveraged to assist 
in remote sites, or in areas where technical personnel are lacking; 
some POCTs have inbuilt connectivity such as Wi-Fi and Bluetooth, 
and smartphones can be used to photograph test results, allowing 
information to be transmitted and received between remote field 
sites and central veterinary offices or laboratories.

Other social considerations include community perception and 
acceptability of POCTs, which can influence POCT uptake in dif-
ferent settings. Communities may have traditional or cultural be-
liefs that make them averse to particular sampling methods, such 
as needle use in pigs (Hobbs et al., 2020). A lack of trust in a test’s 
accuracy, or misperceptions about the extent of a test’s scope can 
undermine success of POCT implementation, as demonstrated 
in social studies evaluating the use of malaria POCTs in human 
health settings: malaria treatment was reportedly often prescribed 
despite a negative result (Johansson et al., 2016) and …respondents 
also believed the tests could identify any cause of illness, beyond ma-
laria (Ansah et al., 2013). Without community support, even fully 
validated and effective diagnostic POCTs are unlikely to be suc-
cessfully implemented in animal disease control or surveillance 
programs in LMICs.
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4  | DISCUSSION

Economic impacts of infectious animal and zoonotic diseases can be 
severe and far-reaching, as has become all too apparent during the 
global COVID-19 pandemic—a zoonotic virus that is widely accepted 
to have a wildlife origin (Zhou et al., 2020). The current Asian ASF ep-
idemic is causing further heavy losses to agricultural and trade sec-
tors, and impacting the daily lives of millions of consumers, livestock 
and crop producers and policymakers worldwide (Hamaide, 2019; 
ProMED-mail, 2019). Social impacts can also be substantial, although 
complex and difficult to quantify. Even in large-scale outbreaks of 
non-zoonotic animal diseases such as FMD and ASF, psychological 
distress can be experienced on individual, household and commu-
nity levels due to uncertainty about income and livelihoods, witness-
ing or involvement in mass livestock culling, social isolation due to 
movement restrictions, loss of trust in authority, altered relationship 
dynamics and a loss of social cohesion (Buetre et al., 2013; Mort 
et al., 2005). The 2001 FMD outbreak in the United Kingdom has 
been described as a traumatic and devastating experience for all those 
who were affected by it…a national crisis…probably one of the great-
est social upheavals since the war (Mort et al., 2005). Misdiagnosis of 
zoonotic diseases can further impact individuals, families and com-
munities, potentially leading to fear, stigma and a loss of rights, such 
as for patients incorrectly diagnosed with Ebola who are unable to 
be cared for by family members, and who in the event of their deaths 
are unable to be buried according to traditional cultural practices 
(Pellecchia et al., 2015).

POCTs have the potential to significantly disrupt traditional 
laboratory-based diagnostic pathways, especially in remote decen-
tralized settings where sample referral networks and adequately 
equipped laboratories are particularly lacking. Diagnostic medi-
cal and veterinary POCTs are being used in LMICs and show clear 
benefits for disease diagnosis and surveillance, particularly when 
supported by policymakers (Mabey et al., 2012). However, despite 
the abundance of POCTs on the commercial market and their clear 
benefits in remote and rural settings, the potential benefits of these 
tests in LMICs remain largely unrealized.

Inadequate regulatory guidance and poor industry oversight has 
led to a proliferation of POCTs of varying quality and fitness for pur-
pose released onto the market, presenting challenges to potential 
end users who are, by design, expected to have limited diagnostic 
experience. Accurate, independent test validation data for commer-
cial POCTs are often incomplete or absent. Even after robust ini-
tial validation testing, POCTs that demonstrate excellent diagnostic 
performance in the laboratory can show markedly lower accuracy 
under field conditions, for a variety of reasons. Similarly, incorpora-
tion of POCTs in diagnostic pathways and disease testing algorithms 
that are successful in one setting may not have adequate uptake in 
others due to the varying and complex interplays between political, 
sociocultural and geographic factors, among others. Government 
veterinary services in LMICs should be aware of the costs, impacts, 
cost-effectiveness and operational feasibility of incorporating 
POCTs into diagnostic workflows in their specific country context, 

and invest their resources accordingly. However, the lack of clear 
POCT-specific validation guidelines promoted by an independent 
organization such as the OIE, the absence of a mandated or widely 
used centralized register of approved POCTs, and the dearth of inde-
pendently validated field studies in the literature at present means 
that many LMICs may simply be selecting POCTs based on purchase 
price alone—a practice which may be creating more problems than 
solutions.

Urgent action is needed. Public and philanthropic funding 
agencies need encouragement to engage with stakeholders for de-
velopment of TPPs, and to invest in the subsequent development 
and independent validation of targeted animal disease POCTs for 
use in field settings, especially for diseases that are only present 
in developing countries and consequently for which commercial 
manufacturing interest is low. The international community should 
be urged to adopt regulatory frameworks for the manufacture and 
commercialization of diagnostic POCTs, and to mandate transparent 
publication of comprehensive, independent POCT validation data 
about test accuracy and fitness for purpose. Standardized techni-
cal guidance and training should be made available for POCT users 
and policymakers in the developing world, with advice for evaluating 
POCT characteristics based on manufacturer information and avail-
able literature, conducting in-house field validation and verification 
of diagnostic POCTS, and correctly interpreting and applying POCT 
results according to the relevant clinical setting.

Without government and community support, even the most ac-
curate and cost-effective diagnostics will fail to have any substantial 
or sustained impact in LMICs. Sociological research and user needs 
analyses are required to understand the drivers of animal disease 
transmission in LMICs, to investigate local knowledge, attitudes and 
practices relating to animal disease diagnosis and surveillance, to 
identify barriers and facilitators to POCTs use in regional contexts 
and to develop strategies for implementing POCTs in the most im-
pactful way to benefit animals, people and communities. Even with 
reliable access to properly validated, fit for purpose POCTs, for dis-
eases of high importance there will still be a need for confirmatory 
laboratory diagnosis and pathogen typing in LMICs for the foresee-
able future. Therefore, support should also be given to initiatives 
that strengthen national veterinary and laboratory capacity, such 
as the Performance of Veterinary Services and laboratory twinning 
programs supported by the OIE and other international partners. 
Advances in and increasing accessibility to technology should also 
be utilized, for example using drones to assist with sample trans-
port in remote locations (Mitchell, 2014; MSF, 2014) and dried tube 
specimens for proficiency testing in resource-constrained settings 
(Parekh et al., 2010).

Infectious animal and zoonotic diseases have been increasing 
in incidence in recent times, particularly in LMICs with high human 
and animal density (Bordier & Roger, 2013), and are increasingly 
posing global threats. Rapid, on-the-spot diagnosis of infectious 
pathogens using POCTs can play an important role in containing 
these outbreaks, however concerted action must be taken by indus-
try, governments, regulators and key stakeholders to overcome the 
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challenges identified in this review in order to realize their potential 
benefits to animal and human populations worldwide.
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